Wrapping conformations of a polymer on a curved surface.
نویسندگان
چکیده
The conformation of a polymer on a curved surface is high on the agenda for polymer science. We assume that the free energy of the system is the sum of bending energy of the polymer and the electrostatic attraction between the polymer and surface. As is also assumed, the polymer is very stiff with an invariant length for each segment so that we can neglect its tensile energy and view its length as a constant. Based on the principle of minimization of free energy, we apply a variation method with a locally undetermined Lagrange multiplier to obtain a set of equations for the polymer conformation in terms of local geometrical quantities. We have obtained some numerical solutions for the conformations of the polymer chain on cylindrical and ellipsoidal surfaces. With some boundary conditions, we find that the free energy profiles of polymer chains behave differently and depend on the geometry of the surface for both cases. In the former case, the free energy of each segment distributes within a narrower range and its value per unit length oscillates almost periodically in the azimuthal angle. However, in the latter case the free energy distributes in a wider range with larger value at both ends and smaller value in the middle of the chain. The structure of a polymer wrapping around an ellipsoidal surface is apt to dewrap a polymer from the endpoints. The dependence of threshold lengths for a polymer on the initially anchored positions is also investigated. With initial conditions, the threshold wrapping length is found to increase with the electrostatic attraction strength for the ellipsoidal surface case. When a polymer wraps around a sphere surface, the threshold length increases monotonically with the radius without the self-intersection configuration for a polymer. We also discuss potential applications of the present theory to DNA/protein complex and further researches on DNA on the curved surface.
منابع مشابه
Conformational behavior of polymers adsorbed on nanotubes.
The importance of hydrophobic interactions in determining polymer adsorption and wrapping of carbon nanotubes is still under debate. In this work, we concentrate on the effect of short-ranged weakly attractive hydrophobic interactions between polymers and nanotubes (modeled as an infinitely long and smooth cylindrical surface), neglecting all other interactions apart for chain flexibility. Usin...
متن کاملBending moduli of polymeric surfactant interfaces
2014 Our recent theory of the free energy and conformations of end-grafted polymer « brushes » is extended to polymers attached to curved surfaces. Several important systems, e.g., layers of polymeric surfactants or of strongly segregated diblock copolymers, can be well described as brushes. By expanding in powers of the curvature the free energy of a brush on a curved surface, the mean and Gau...
متن کاملConformational Properties Of A Semiflexible Polymer Chain: Exact Results On A Hexagonal Lattice
We have investigated conformational properties of a linear semiflexible homopolymer chain in the bulk and adsorption desorption behaviour in the presence of an attractive impenetrable curved surface using lattice models. Since, it is understood that the essential physics associated with the conformational behavior of such polymer chains can be derived from a model of a self avoiding walk (SAW) ...
متن کاملPolymer Adsorption on Curved Surfaces: Finite chain length corrections
The structural properties of polymers adsorbed onto a surface have been widely investigated using self-consistent mean-field theories. Recently, analytical mean-field theories have been applied to study polymer adsorption on curved surfaces but all in the context of the ground state dominance approximation in which the polymer chain length (N) is essentially infinite. Using an expression for th...
متن کاملConformational phase diagram for polymers adsorbed on ultrathin nanowires.
We study the conformational behavior of a polymer adsorbed at an attractive stringlike nanowire and construct the complete structural phase diagram in dependence of the binding strength and effective thickness of the nanowire. For this purpose, Monte Carlo optimization techniques are employed to identify lowest-energy structures for a coarse-grained model of a polymer in contact with the nanowi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2007